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Positive and negative domains of vertex-angle space of the spherical harmonics for the 
three-body contributions of five lower order dispersion multipoles have been determined and 
are shown in figures. Procedures, which use the figures to determine the sign of the three-body 
contribution for bodies which form a triangle with specified vertex angles, are given. No calcu- 
lation is required. 

1. I n t r o d u c t i o n  

In the interpretat ion of  the dispersion component  of  the interaction energy, it is 
useful to know the sign of  any omitted nonadditive contributions. This paper con- 
siders the three-body multipolar  dispersion contr ibution for five of  the lowest order  
spherical harmonics.  Suppose the three bodies form a triangle with specified vertex 
angles. For  two of  the five contributions, one determines whether  the contr ibut ion 
vanishes or is positive (or negative) for an arbi trary triangle by locating one point 
in its figure. For  the other  three contributions, one can determine whether  the con- 
tr ibution is positive or is negative in a useful fraction of  all triangles by simply locat- 
ing three points in its figure. The five figures used show the complete set of  nodal  
curves which divide the space of  two of  the three vertex angles into domains in 
which the contr ibut ion is positive and domains in which it is negative. The results 
are valid for spherical atoms and are reasonable approximations for molecules of  
the regular  tetrahedral  point group Td and the regular octahedral  point group Oh. 

t It is with deep sorrow that I report that my colleague, Dr. David Belford, passed away before this 
work had been completed. 
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2. Methods  used to determine the nodal  curves and the signs of  the d o m a i n s  

Axilrod and Teller [1] and Muto [2] derived the equation for the leading term in 
the multipolar expansion for the three-body dispersion contribution for spherical 
atoms and approximately spherically molecules. Their result for the leading long- 
range three-body dispersion contribution, U 3, in the third perturbation order has 
been extended to higher order multipoles by Bell [3]. He derived general equations, 
which he first simplified by an appropriate choice of coordinate frame and then 
gave explicit equations for three additional lower order multipoles in the following 
convenient form. Let 

o(k): the order of the kth spherical harmonic, k = 1,2, 3; (la) 

0(k): the vertex angle of the kth spherical harmonic, k = 1,2, 3 ; (1 b) 

Rhj: the distance between the expansion centers of the hth and j th  

spherical harmonics. (1 c) 

Then for a given choice of the interacting species, 

V 3 (o(k), O(k), Rhj) = Z[o(k)] W[o(k), O(k)]. 

R12-°(1)-°(2)-I R13-°(1)-°(3)-l R23-°(2)-°(3)-l ; (2a) 

Z[o(k)]: a function solely of the multipole orders and the choice of the 

interacting species ; (2b) 

W[o(k), 0(k)]: a function solely of the multipole orders and the three 

vertex angles. (2c) 

Doran and Zucker [4] derived an explicit equation for an additional multipole con- 
tribution and verified Bell's equation for the dipole-dipole-quadrupole contribu- 
tion, which disagreed with an earlier equation. 

Since the sign of U 3 is determined by the sign of W[o(k), 0(k)] and the three ver- 
tex angles, O(k), of the spherical harmonics are dependent, two were chosen as inde- 
pendent variables, [(X,¢),X+ ¢~<180°]. (The choices of X and ¢ are given in 
section 3.1 .) For each set of spherical harmonic orders, {o(k)}, trigonometric iden- 
tities were used to transform W[o(k), 0(k)] into a function of (X, ¢) which had the 
form 

W[o(k), X, ¢] = A + Bsin ¢, (3) 

where A and B have general forms specified in appendix A. 
Since each W[o(k), X, ¢] is an analytic function of (X, ¢), its zeros must lie on con- 

tinuous curves which divide the (X, ¢) space into positive and negative domains. 
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Appendix A gives the procedure used to determine sets of roots (X0, q$0) on these 
nodal curves. The procedure replaces the computationally intensive determination 
of  a large number  of  roots of  transcendental equations with the more efficient deter- 
minat ion of  the roots of a polynomial. 

The signs of  W[o(k), X, 4hi in the domains bounded by the nodal curves whose 
points are solutions to the equations 

W[o(k), x, cb ] = 0  (4) 

were determined in the following ways. (a) The first partial derivatives of 
W[o(k), X, 4)] were calculated at a set of points on each nodal curve. The local linear 
Taylor series approximation at each point gave a unique, consistent assignment of  
the signs. (b) The signs of W[o(k), X, qb] determined in (a) were verified by calculat- 
ing W[o(k), X, 4~] for test points in each domain. 

3. Results  

Points on the nodal curves and the signs in the domains were determined for 
each of  the three lowest total spherical harmonic orders 

o = o(1) + 0(2) +o(3)  = 3, 4,5 (5) 

and the one of  order o = 6, for which Bell [3] had derived eq. (2): o = 3, triple 
dipole; o = 4, dipole, dipole-quadrupole; o = 5, dipole-quadrupole-quadrupole 
and dipole-dipole-octupole; o -- 6, triple quadrupole. 

3.1. CHOICES ADOPTED FOR X AND 4> 

For  the contributions of total orders 4 and 5 two of the o(k) are the same and 
one is distinct. In this case W[o(k), 0(k)] is invariant under a permutat ion of  the m 
and n such that  o(m) = o(n). Then, 

4) - the vertex angle for the distinct spherical harmonic order ; (6a) 

X =O(m) or O(n). (6b) 

For  the triple dipole and triple quadrupole contributions in which all three spheri- 
cal harmonic  orders, o(k), are identical, W[o(k), 0(k)] is invariant under any per- 
muta t ion  of the k. Therefore, for these contributions, 

X = O(m), cb = O(n), any m and any n. (6c) 

3.2. INTERPRETATION OF THE FIGURES 

Figures 1-5 show the continuous curves drawn through the solutions (X0, ~b0) 
to eq. (4), which are the complete set of  nodal curves for each of  the five different 
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Fig. 1. Positive and negative domains of (X, q~) space for the three-body triple dipole (spherical harmo- 
nic orders (1,1,1)) contribution are identified by (+) and ( - ) .  The angles X and ~b are defined by eq. 

(6c). The curves are the nodal curves. 
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Fig. 2. Positive and negative domains of (X, ~b) space for the three-body dipole-dipole-quadrupole 
(spherical harmonic orders (1,1,2)) contribution are identified by (+) and ( - ) .  The angles X and ~b are 

defmed by eqs. (6a, b). The curves are the nodal curves. 
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Fig. 3. Positive and negative domains of (X, ~) space for the three-body dipole-quadrupole-quadru- 
pole (spherical harmonic orders (1,2,2)) contribution are identified by (+) and ( - ) .  The angles X and 

are defined by eqs. (6a, b). The curves are the nodal curves. 
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Fig. 4. Positive and negative domains of (X, ~b) space for the three-body dipole-dipole-octupole (sphe- 
rical harmonic orders (1,1,3)) contribution are identified by (+) and ( - ) .  The angles X and ¢ are 

def'med by eqs. (6a, b). The curves are the nodal curves. 
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Fig. 5. Positive and negative domains of (X, ~b) space for the three-body triple quadrupole (spherical 
harmonic orders (2,2,2)) contribution are identified by (+) and ( - ) .  The angles X and ~b are defined by 

eq. (6c). The curves are the nodal curves. 

multipole contributions. These nodal curves divide the (X, 4)) space into domains. 
Domains in which W[o(k), X, ~b] is negative are designated ( - )  and domains in 
which W[o(k), X, 4)] is positive are designated (+). Section 3.5 shows how these fig- 
ures in (X, q~) space are used to determine the sign of each contribution for three 
interacting bodies which form a triangle with specified vertex angles. 

Figure 6 shows the domains of (X, ~b) space for the interactions of both total 
orders 3 and 4: [(1, 1, 1), (1, 1,2)]. Domains in which both W[o(k), X, ~b] are positive 
are designated (+), domains in which both are negative are designated ( - )  and 
domains in which one is positive and the other is negative are designated (?). 4~ is the 
vertex angle for the spherical harmonic order 2 in the (1,1,2) interaction and any 
of the three equivalent vertex angles in the (1,1,1) interaction. Each curve shown is 
a nodal curve in (X, ~b) space for one of the interactions. Figure 7 does the same 
for the two interactions of total order 5: [((1,2,2), (1,1,3)]. ~b is the vertex angle for 
spherical harmonic order 1 in the (1,2,2) interaction and 3 in the (1,1,3) interaction. 
Section 3.5 also shows how each of these figures is used to determine a sign com- 
mon to both combinations when the interacting bodies form a triangle with speci- 
fied vertex angles. 

3.3. SYMMETRY RELATIONS 

Appendix B gives simple proofs that characteristics of the nodal curves shown 
in the figures are direct consequences of symmetries of W[o(k), 0(k)] of eq. (2) for 
the multipole interactions studied. These symmetries also give identities which 
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Fig. 6. The three-body contributions of both total spherical harmonic orders, 3 and4 (spherical harmo- 
nic orders (1,1,1) and (1,1,2)). Domains of (X, ¢) space in which the contributions of both orders 
are positive are identified by (+) and domains in which the contributions of both are negative are iden- 
tified by ( - ) .  Domains in which one is positive and the other is negative are identified by (?). The 

angles X and ~b are defined by eqs. (6a, b). 
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Fig. 7. The three-body contributions of both total spherical harmonic order 5 (spherical harmonic 
orders (1,2,2) and (1,1,3)). Domains of (X, ¢) space in which the contributions of both orders are 
positive are identified by (+) and domains in which the contributions of both are negative are identi- 
fied by ( - ) .  Domains in which one is positive and the other is negative are identified by (?). The angles 

X and ~b are defined by eqs. (6a, b). 



86 E.S. Campbell, D. Belford / Three-body dispersion multipoles 

were used to generate additional points on the nodal curves from the points deter- 
mined according to appendix A. 

3.4. SPECIAL SOLUTIONS WHICH TEST THE CORRECTNESS OF THE NODAL 
CURVES 

3.4.1. Isosceles triangle geometries 
Consider a nodal  curve, ~b(X), in any o f  the figures 1-5 in which ~b spans an inter- 

val [q~min, ~bmax], where 0 < q~min- Then X spans the interval [0, 180 ° - q~max]. The sym- 
metry  relation for all five figures given by appendix B implies that  at the 
minimum,  (Xm, q~m), of  q~(X), the species lie at the corners of  an isosceles triangle 
with (Xm, 4~m) = ([180 ° -- 4~m]/2, ffmin). Table 1 gives the roots ~m calculated with 
the special equations for isosceles triangle geometries. 

The independent  determinat ion of  these special solutions points gave a very 
close check on the correctness our nodal  points obtained using appendix A. For  
each (Xm, q~m> there were two roots (XL, (~t) and (XR, qT) f rom our programs and 
one o f  the symmetry  relations such that: (i) XL < Xm < XR; (ii) 0 < 4~' -- 4~m ~ 0-02 °. 

3.4.2. Limit points 
The limit points for which either X or ~b approached 0 ° or their sum approached 

180 ° are given in table 2. The fact that  these limit points, which were independently 
calculated, and the roots determined by our  general programs lie on the same plots 
of  the curves gave addit ional approximate  checks on our  programs.  

Another  figure, which shows the sub-domains in which the U 3 (as a function of  
(X, q~)) for each o f  the five contributions share a common  positive or negative sign, 
is available on request. 

3.5. USE OF THE FIGURES TO DETERMINE THE SIGN OF U 3 FOR THREE BODIES 
WHICH FORM AN ARBITRARY TRIANGLE 

Suppose the bodies form a triangle with vertex angles 

(01,02, 03). (7) 

Table 1 
q~m is the value of ~b in degrees at the minimum (Xm, ~bm ) of a curve. At the minimum the species lie 
at the corners of an isosceles triangle. 

Spherical harmonic orders ~bm 

(1,1,1) 117.22 
(1,1,2) 82.36 138.12 
(1,2,2) 128.97 
(1,1,3) 63.62 106.77 
(2,2,2) 97.02 144.79 

148.25 
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Table 2 
The angles XL and ~bL in degrees for limit points (XL, 0) and (0, ~bL). 

87 

Spherical harmonic orders XL ~L 

(1,1,1) 54.74 125.26 54.74 125.26 
(1,1,2) 54.74 125.26 39.23 90.00 

140.77 
(1,2,2) 30.56 70.12 39.23 90.00 

109.88 149.44 140.77 
(1,1,3) 54.74 125.26 30.56 70.12 

109.88 149.44 
(2,2,2) 30.56 70.12 30.56 70.12 

109.88 149.44 109.88 149.44 

Consider first the procedure for the use of figs. 1 and 5 in which the three spherical 
harmonic  orders are the same. Since W[o(k), 0(k)] ofeq.  (2) is invariant under  any 
permutat ion of the k, choose arbitrarily one of  the six possible pairs, (X = 0i, 
q~ = 0j), and locate the point on the figure. Then if (X = q~i, ~b = 0j) lies on one of  the 
nodal  curves of  Wo(k), X, ~b] shown, U 3 for the triangle vanishes. If  the point  lies 
in a domain  designated " + "  ( " - " ) ,  U 3 is positive (negative). For  example, the 
(2,2,2) contribution to U 3 for the triangle (123 °, 37 °, 20 °) is negative since one of  
the possible choices, (X, q~) = (123 °, 37°), lies in a domain in fig. 5 designated ( - ) .  
Thus, this procedure determines whether U 3 vanishes for the triangle, and if not  
determines its sign. 

Consider next the procedure for the use of figs. 2, 3 and 4 in which one spherical 
harmonic  order is distinct. Figure 3 for the (1,2,2) interaction will be used as an 
example. Recall that  eq. (6a) defines q~ as vertex angle for the distinct spherical har- 
monic  order, in this case 1. Therefore, U 3 for the three interacting bodies is the 
s u m  

U3=f~-~W[o(k),~.,4)jl, q~j=0j, j =  1,2,3;  (8a) 
] 

f :  a positive function specified by eq. (2). (8b) 

By symmetry  eq. (B.2) of appendix B, Xj can be either of the other two angles, 

[Xl  = 02 or 03; X2 = 01 or 03; X3 = 01 or 02]. (8C) 

T h e j t h  term in the sum will vanish if (Xj, 0j) lies on one of  the nodal curves shown, 
will be positive if it lies in a domain designated " + "  and negative if it lies in a 
domain  d e s i g n a t e d " - " .  Therefore, one must  locate three (Xj, ~bj) of  eq. (8) in the 
figure. At most  one of  the three can lie on a nodal curve. Therefore, the sum of the 
three terms is negative if each (Xj, q~j) is either a point on a nodal curve or in a 
domain  designated " - "  and the sum is positive if each is either a point on a nodal  
curve or in a domain  des ignated"  +" .  For  example, the (1,2,2) contr ibution to U 3 is 
negative for any triangle with (01,02, 03) = (134 °, 36 °, 10 °) since in fig. 3 each of  
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the three (Xj, q~j) [( 10°, 134°), ( 134°, 36°) and (36 °, 10°)] lies in a domain designated 
" - " .  Similarly, the (1,2,2) contribution to U 3 is positive for any triangle with 
(01,02, 03) = (30 °, 70 °, 80 °) since each of the three (Xj, ~bj)[(70 °, 30°), (80 °, 70 °) and 
(70 °, 80°)] lies in a domain designated "+" .  If at least one point is in a " + "  domain 
and at least one in a " - "  domain, the figure cannot be used to determine the sign 
of the sum. The simple procedure of locating three points determines the sign of U 3 
for the interactions of figs. 2-4 in [14%, 23%, 14%] of all triangles. (Since two 
angles determine the third, Ao = [area of domains in (01,02) space of U 3] was deter- 
mined for each figure. The percentage for each figure= 100. {Ao/[total area]}). 

The procedure for figs. 2-4 is also used for fig. 6. One must locate three (Xj, ~bj) 
ofeq.  (8) in the figure. Then both U 3 for the (1,1,1) and U 3 for the (1,1,2) interac- 
tions are negative if each (X/, 4~J) is either a point on a nodal curve or in a domain 
designated " - "  and both are positive if each is either a point on a nodal curve or in 
a domain designated "+" .  In 14% of all triangles one can determine that both U 3 
are positive or both are negative by simply locating three points in the figure. The 
same procedure is also used for fig. 7. However, the fraction of all triangles for 
which the procedure shows that U 3 for the (1,2,2) and U 3 for the (1,1,3) contribu- 
tions are both positive or are both negative is much smaller. 

4. Compar isons  with earlier work 

In agreement with fig. 1, Axilrod and Teller [1] reported that both the equilateral 
and right triangle configurations are positive and, as is obvious from their equa- 
tion, the collinear configuration is negative. Midzuno and Kihara [5] reported that 
the interaction was repulsive whenever the largest of the angles [01,02 and 
03] < 117 ° (our value: 117.221 o) and attractive whenever the largest was > 126 ° (our 
value: 125.26°). Our isosceles triangle geometry for the triple dipole contribution 
agrees with that reported by Bruch et al. [6]. They also made qualitative comments 
about the contributions of several higher order multipoles in isosceles triangle con- 
figurations with a vertex angle in the 110-120 ° range. The latter cannot be directly 
compared with our results. 

O'Shea and Meath [7] have studied the effect of charge overlap on the accuracy 
of the triple dipole equation and have discussed the use of the triple dipole equation 
to represent the total three-body contribution [8]. We are unaware of any study of 
the effect of charge overlap on the accuracy of the higher three-body dispersion 
multipole contributions. However, both Murrell and Shaw [9] and Kreek and 
Meath [10] have studied the effect of charge overlap on the higher order two-body 
dispersion multipoles. 

5. Summary  

The sign of each three-body multipole dispersion contribution is determined by 
the vertex angles of the triangle. The positive and negative domains of two vertex 
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angle space have been determined for five of  the lowest spherical harmonic  
orders. When all spherical harmonic  orders are the same, one determines that  the 
contr ibut ion from three bodies which form a triangle with arbi t rary vertex angles 
vanishes or its sign by locating one point in its figure. When one of  the spherical 
harmonic  orders is distinct, one determines the sign of  the contr ibut ion in a useful 
fraction of  all triangles by locating 3 points in its figure. Qualitative characteristics 
of  the nodal  curves and relations between them have been shown to be simple con- 
sequences of  the symmetry  of  the multipole interactions. 

For  those who would like figures which can be more  accurately read, an ACII  
file of  lists of  points on the curves accurate to 0.01 ° is available on request. 
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A p p e n d i x  A 

THE D E T E R M I N A T I O N  OF POINTS ON THE CURVES ON WHICH U 3 AS A 

F U N C T I O N  OF (X, ~b) VANISHES 

w[o(k), X, 4] has the general form 

A + Bsin~b ; 

where either 

or 

(A.la)  

A = a sum of  terms c, cos2n q S, 

B = a single term or a sum of  terms d, cos 2"+l ~b, 

e, and d, are function of  t r igonometric  functions of  X, n~>0; (A. lb)  

B = a sum of  terms c, cos 2~ 4~, 

A = a single term or a sum of  terms d, cos 2~+1 4 ,  

c, and d, are functions of  t r igonometric  functions of  X, n~>0. (A.lc)  

Each root  of  W[o(k) ,  X, 4~] is also a root  of  WM[o(k), X, ~b] -- A 2 - B 2 sin z 4) = 
A 2 - Bz(1 - cos 2 q~). Fur thermore ,  WM has the form of  the polynomial  equat ion 
(A.2): 
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WM[o(k),;g, 4)] = E CJ[°(k)';g]YJ' O<~j4M; 
J 

(A.2a) 

Y = c o s  2 4); (A.2b) 

Cj[o(k), ;g): a coefficient, which for each set of  orders {o(k)} is an explicit 

funct ion of  t r igometric  functions of  ;g; (A.2c) 

M:  the order  of  the polynomial  in Y, determined by {o(k)}.  (A.2d) 

This fo rm was used in the following efficient de terminat ion  of  a set of  roots  of  
WM. For  each 4 ° step of  ;g, the coefficients Cj were compu ted  and the roots  (;g, Y) 
o f  WM were determined.  Any  root  which was not  consistent  with eq. (A.2b), 
Y = cos 2 4), was rejected. 

Since WM has roots  (;go, 4)0) which are not  roots  of  W[o(k), ;g, 4)), only those 
roots  of  WM for which the absolute value of  W[o(k),xo,4)o]<[{1.1 x 10-7} • 
{the m a x i m u m  absolute value of  one of  the terms in the summat ion}]  were ac- 
cepted as roots  of  W[o(k), X, 4)]. 

Appendix B 

SYMMETRY RELATIONS AND CHARACTERISTICS OF THE N O D A L  CURVES 

A symmetry relation for allfivefigures 
For  each of  the five interactions,  at least wo of  the spherical ha rmonic  orders 

o(k) are the same. Let their indices be denoted by k = m and k = n. Then  
W[o(k), 0(k)] of  eq. (2) is invariant  under  a pe rmuta t ion  o f m  and n. When  one of  
the orders o(p) is distinct, eq. (6a) defines 4) as its vertex angle, O(p). Therefore,  for 
each figure, 

W[o(k), X = O(m), 4) = 0(p)] = W[o(k), X = 0(n), 4) -- 0(p)]. (B.1) 

Therefore  

W[o(k),  Xa, 4)a] = W[o(k),  ;gb, 4)b] ( B . 2 a )  

whenever  

;gb = 180 ° -- (;g~ + 4)~), 4)6 = 4)~. (B.2b) 

Thus,  whenever  (;ga, 4),~) is a root  ofeq.  (4), (;gb, 4)b) is also a root.  This equa t ion  
was used in supplement ing  the lists of  nodal  points  for all 5 figures. 

Two symmetry relations valid for figs. I and5 only 
For  figs. 1 and 5 all orders o(k) are the same. In this case: W[o(k), 0(k)] of  eq. 
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(2) is invar iant  under  a pe rmuta t ion  o f  any pair of  the three indices k = r, s, t. Con-  
sider first a fixed choice of  X: 

X = O(t). (B.3) 

Then,  

W[o(k) ,  X = O(t), ~b = 0(r)] = W[o(k) ,  X = 0(t), ~b = 0(s)]. (B.4) 

Therefore  

W[o(k), Xa, q)a] = W[o(k), Xc, ¢c] (B .5a )  

whenever  

Xc = Xa, ¢c = 180 ° - (Xa "-~ q~a). (n.5b) 

Thus  whenever  (Xa, Ca) is a root  of  eq. (4), (X~, ¢c) is also a root.  Second, W is 
invar iant  under  a pe rmuta t ion  of  the choices for both  X and ¢: 

W[o(k) ,  Z = O(r), 4) = 0(s)] = W[o(k) ,  X = O(s), ~b = 0(r)]. (n.6) 

Therefore,  whenever  (X = O(r),~b = O(s)) is a root  of  eq. (4), then ( X =  0(s), 
cb = O(r)) is also a root.  Equat ions  (B.5) and (B.6) were also used in supplement ing  
the list of  points  for figs. 1 and 5. 

Character&tics  o f  the nodal  curves 
Consider  a nodal  curve of  section 3.4.1 with a m i n i m u m  which corresponds  to 

an  isosceles triangle geometry.  Such a curve in Figs. 1 and 5, in which all spherical 
ha rmon ic  orders are the same, implies the existence of  two addi t ional  curves. The  
symmet ry  equat ion  (B.5) requires another  curve A in which bo th  X and ~b span the 
same interval, [0, 180 ° - ~max]- The symmet ry  equat ion  (B.6) requires a third curve 
B in which the roles of  X and ~b are interchanged.  In this curve, X spans the interval 
[q~min, q)max] and q$ spans the same interval as it does in curve A. This curve is a func- 
tion, X(q$), which has a m i n i m u m  at X = ~bmin and ~b = ([180 ° - q~min]/2. Clearly, a 
curve with an isosceles triangle point  in figs. 2, 3 and 4 for which only two of  the 
mul t ipole  orders are the same has no corresponding curves A and B. 

A l though  figs. 2, 3 and 4, in which only two of  the three orders are the same, 
also have curves in which ~b spans an interval [0, qSh] and X spans an interval 
[0, XL], XL and ~bL are different. Symmet ry  equat ion  (B.2) requires ano ther  curve in 
which ~b spans the same interval, [0, 4)L]. As in figs. 1 and 5, this curve is a funct ion  
X(q$) with a m i n i m u m ,  (Xmin, ~bmin). However,  in these figures, the m i n i m u m  canno t  
cor respond  to an isosceles triangle geometry.  
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